Efficient Decomposition of Bimatrix Games

Xiang Jiang Arno Pauly

Computer Laboratory, University of Cambridge

SR 2014, Grenoble
Overview

We are interested in (doable) operations \circ on the class of bimatrix games, such that

1. from Nash equilibria of games G_1 and G_2, we can obtain a Nash equilibrium of $G_1 \circ G_2$,
2. and from any Nash equilibrium of $G_1 \circ G_2$ we can obtain Nash equilibria of both G_1 and G_2.
3. Furthermore, \circ^{-1} is doable, too.

then we may conclude:

- Solving a fixed finite number of games is no harder than solving a single game.
- Solving a large decomposable game is no harder than solving a number of small games.
Outline

The product-operator

The sum-operator

A detour on wtt-reductions

The decomposition algorithm
Defining products

Definition
Given an $n_1 \times m_1$ bimatrix game (A^1, B^1) and an $n_2 \times m_2$ bimatrix game (A^2, B^2), we define the $(n_1 n_2) \times (m_1 m_2)$ product game $(A^1, B^1) \times (A^2, B^2)$ as (A, B) with $A_{[i_1,i_2][j_1,j_2]} = A^1_{i_1,j_1} + A^2_{i_2,j_2}$ and $B_{[i_1,i_2][j_1,j_2]} = B^1_{i_1,j_1} + B^2_{i_2,j_2}$.

\[
\begin{pmatrix}
A^1 + A^2_{11} & A^1 + A^2_{12} & \cdots \\
A^1 + A^2_{21} & A^1 + A^2_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{pmatrix}
\]
Results for equilibria

Theorem
If \((x^k, y^k)\) is a Nash equilibrium of \((A^k, B^k)\) for both \(k \in \{1, 2\}\), then \((x, y)\) is a Nash equilibrium of \((A, B)\), where \(x_{[i_1 i_2]} = x^1_{i_1} x^2_{i_2}\) and \(y_{[m_1 m_2]} = y^1_{m_1} y^2_{m_2}\).

Theorem
If \((x, y)\) is a Nash equilibrium of \((A, B)\), then \((x^1, y^1)\) given by
\[
x^1_i = \sum_{l=1}^{n_2} x_{[i, l]} \quad \text{and} \quad y^1_j = \sum_{l=1}^{m_2} y_{[j, l]}\]
is a Nash equilibrium of \((A^1, B^1)\).
The definition

Definition
Given an $n_1 \times m_1$ bimatrix game (A^1, B^1) and an $n_2 \times m_2$ bimatrix game (A^2, B^2), we define the $(n_1 + n_2) \times (m_1 + m_2)$ sum game $(A^1, B^1) + (A^2, B^2)$ via the constant $K > \max_{i,j}\{|A_{i,j}, B_{i,j}|\}$ as (A, B) with:

\[
A_{i,j} = \begin{cases}
A^1_{i,j} & \text{if } i \leq n_1, j \leq m_1 \\
A^2_{(i-n_1),(j-m_1)} & \text{if } i > n_1, j > m_1 \\
K & \text{otherwise}
\end{cases}
\]

\[
B_{i,j} = \begin{cases}
B^1_{i,j} & \text{if } i \leq n_1, j \leq m_1 \\
B^2_{(i-n_1),(j-m_1)} & \text{if } i > n_1, j > m_1 \\
-K & \text{otherwise}
\end{cases}
\]

\[
\begin{pmatrix}
A^1 & K \\
K & A^2
\end{pmatrix}
\begin{pmatrix}
B^1 & -K \\
-K & B^2
\end{pmatrix}
\]
Lemma
Let \((x, y)\) be a Nash equilibrium of \((A^1, B^1) + (A^2, B^2)\). Then \(0 < \left(\sum_{i=1}^{n_1} x_i\right) < 1\) and \(0 < \left(\sum_{j=1}^{m_1} y_j\right) < 1\).

Theorem
If \((x, y)\) is a Nash equilibrium of \((A^1, B^1) + (A^2, B^2)\), then a Nash equilibrium \((x^1, y^1)\) of \((A^1, B^1)\) can be obtained as \(x^1_i = \frac{x_i}{\sum_{l=1}^{n_1} x_l}\) and \(y^1_j = \frac{y_i}{\sum_{l=1}^{m_1} y_l}\).
The second result on equilibria

Theorem
Let \((x^k, y^k)\) be a Nash equilibrium of \((A^k, B^k)\) resulting in payoffs \((P^k, Q^k)\) for both \(k \in \{1, 2\}\). Then \((x, y)\) is a Nash equilibrium of \((A^1, B^1) + (A^2, B^2)\), where
\[
x_i = x^1_i \frac{K - Q^2}{2K - Q^1 - Q^2} \quad \text{for} \quad i \leq n_1,
\]
\[
x_i = x^2_i \frac{K - Q^1}{2K - Q^1 - Q^2} \quad \text{for} \quad i > n_1,
\]
\[
y_j = y^1_j \frac{K - P^2}{2K - P^1 - P^2} \quad \text{for} \quad j \leq m_1,
\]
\[
y_j = y^2_j \frac{K - P^1}{2K - P^1 - P^2} \quad \text{for} \quad j > m_1.
\]
Complexity of the translations

The operations on games and Nash equilibria are very simple. In particular, they are

- computable even for real payoffs.
- BSS computable.
- polynomial-time computable for rational payoffs.
The product was originally introduced to show that $\text{Nash} \equiv^W \text{Nash}^*$, i.e. that computable many-one reductions and computable wtt reductions to the problem of finding a Nash equilibrium for a bimatrix game with real-valued payoffs coincide.

Similarly, the sum can be used to show polynomial-time many-one and polynomial-time wtt reductions to finding Nash equilibria of bimatrix games with rational payoffs coincide. This implies that PPAD is closed under polynomial-time wtt reductions.
The algorithm

Our basic algorithm proceeds as follows: To solve a game (A, B)

1. test whether (A, B) is the sum of (A^1, B^1) and (A^2, B^2) via some constant K. If yes, solve (A^1, B^1) and (A^2, B^2) and combine their Nash equilibria to an equilibrium of (A, B) via Theorem 7. If no,

2. test whether (A, B) is the product of (A^1, B^1) and (A^2, B^2). If yes, solve (A^1, B^1) and (A^2, B^2) and combine their Nash equilibria to an equilibrium of (A, B) via Theorem 2. If no,

3. find a Nash equilibrium of (A, B) by some other means (i.e. the GAMBIT library).

Runtime: $O(S^2f(\lambda))$
Experimental procedure

1. We randomly generated a decomposition tree
2. and payoffs in the leaves of size $\leq 3 \times 3$,
3. such that the entire game would have size $(100 - -110) \times (100 - -1110)$.
4. Then we forgot about the structure, and only consider the resulting bimatrix game.
Some experimental results

Figure: gambit-gnm
Questions?

Thanks for listening.