Reasoning about Knowledge and Strategies: Epistemic Strategy Logic

Francesco Belardinelli

Laboratoire IBISC, Université d’Evry

Strategic Reasoning – 5 April 2014
Overview

1 Motivation and Background
 ▶ logics for reasoning about strategies and knowledge

2 Epistemic Strategy Logic
 ▶ semantics
 ▶ syntax

3 Main Contribution
 ▶ model checking ESL is no harder than SL

4 Imperfect Information
 ▶ benefits of combining epistemic and strategy modalities

5 Conclusions and Future Work
Motivation and Background

Logics of strategic abilities

- Logics for strategic reasoning are a thriving area of research in AI and MAS.
Motivation and Background

Logics of strategic abilities

- Logics for strategic reasoning are a thriving area of research in AI and MAS.
- Two lines of research:
 1. Multi-modal logics to formalise strategic abilities and behaviours of individual agents and groups:
 - Alternating-time Temporal Logic [AHK02]
 - Coalition Logic [Pau02]
 - Strategy Logic [CHP10, MMV10]
 2. Extensions of logics for reactive systems with epistemic operators to reason about the knowledge agents have of the system’s evolution:
 - Combinations of CTL and LTL with multi-modal epistemic logic $S5_n$ [HV86, HV89, FHMV95]
 - Successfully applied to MAS specification and verification [GvdM04, KNN+08, LQR09]
Motivation and Background

Logics of strategic abilities

- Logics for strategic reasoning are a thriving area of research in AI and MAS.

- Two lines of research:
 1. multi-modal logics to formalise strategic abilities and behaviours of individual agents and groups:
 - Alternating-time Temporal Logic [AHK02]
 - Coalition Logic [Pau02]
 - Strategy Logic [CHP10, MMV10]
 2. extensions of logics for reactive systems with epistemic operators to reason about the knowledge agents have of the system’s evolution:
 - combinations of CTL and LTL with multi-modal epistemic logic S_5^n [HV86, HV89, FHMV95]
 - successfully applied to MAS specification and verification [GvdM04, KNN+08, LQR09]

- Along these lines, [vdHW03] introduced ATEL.
 - spawned a wealth of contributions:
 - imperfect information/uniform strategies [Sch04, JvdH04]
 - constructive knowledge [JÅ07]
 - irrevocable/feasible strategies [AGJ07, Jon03]
Motivation and Background
Logics of strategic abilities

- Logics for strategic reasoning are a thriving area of research in AI and MAS.

Two lines of research:

1. Multi-modal logics to formalise strategic abilities and behaviours of individual agents and groups:
 - Alternating-time Temporal Logic [AHK02]
 - Coalition Logic [Pau02]
 - Strategy Logic [CHP10, MMV10]

2. Extensions of logics for reactive systems with epistemic operators to reason about the knowledge agents have of the system’s evolution:
 - Combinations of CTL and LTL with multi-modal epistemic logic S5n [HV86, HV89, FHMV95]
 - Successfully applied to MAS specification and verification [GvdM04, KNN+08, LQR09]

Along these lines, [vdHW03] introduced ATEL.

- Spawned a wealth of contributions:
 - Imperfect information/uniform strategies [Sch04, JvdH04]
 - Constructive knowledge [JÅ07]
 - Irrevocable/feasible strategies [AGJ07, Jon03]

Epistemic Strategy Logic = strategies + knowledge

- Topic of interest [HvdM14b, HvdM14a]
The Prisoner’s Dilemma

Games in Normal Form

- Anne and Bob can either Cooperate or Defect
- payoff ordering: \(a > b > c > d \)

\[
\begin{array}{c|cc}
\text{Bob} & \text{Cooperate} & \text{Defect} \\
\hline
\text{Cooperate} & b, b & d, a \\
\text{Defect} & a, d & c, c
\end{array}
\]

- can Anne achieve payoff \(a \)?
- does Anne know whether she can achieve payoff \(a \)?
- does Bob know whether Anne has a strategy to achieve payoff \(a \)?
- do Anne and Bob know \((de \ dicto)\) whether they can reach a Nash equilibrium?
- are there strategies such that Anne and Bob know \((de \ re)\) that they can reach a Nash equilibrium?
Epistemic Concurrent Game Models

Agents

We adopt an agent-oriented perspective.

Definition (Agent)

An *agent* i is

- situated in some *local state* $l_i \in L_i$ and . . .
- performs the *actions* in Act_i
- . . . according to her *protocol function* $\text{Pr}_i : L_i \mapsto 2^{\text{Act}_i}$

The setting is reminiscent of the *interpreted systems semantics* for MAS [FHMV95].

Example (Prisoner's Dilemma)

Agent $\text{Anne} = \langle L_A, \text{Act}_A, \text{Pr}_A \rangle$ is defined as

- $L_A = \{\epsilon_A, a, b, c, d\}$
- $\text{Act}_A = \{C, D, *\}$, where * is the *skip* action
- $\text{Pr}_A(\epsilon_A) = \{C, D\}$ and $\text{Pr}_A(a) = \text{Pr}_A(b) = \text{Pr}_A(c) = \text{Pr}_A(d) = \{*\}$

The definition of agent *Bob* is symmetric.
Epistemic Concurrent Game Models

ECGM

The interactions amongst agents generate ECGM.

- related to CGS [AHK02, MMV10] and AETS [vdHW03]
- global states are not primitive: \(s = \langle l_0, \ldots, l_\ell \rangle \in G = \Pi_{i \in Ag} L_i \)
- joint actions are tuples \(\sigma = \langle \sigma_0, \ldots, \sigma_\ell \rangle \in Act = \Pi_{i \in Ag} Act_i \)

Definition (ECGM)

Given
- a set \(Ag = \{i_0, \ldots, i_\ell\} \) of agents
- a set \(AP \) of atomic propositions

an ECGM \(\mathcal{P} \) includes
- a finite set \(I \subseteq G \) of initial global states
- a transition function \(\tau : G \times Act \rightarrow G \)
- an interpretation \(\pi : AP \rightarrow 2^G \) of atomic propositions

- the epistemic indistinguishability relation is not primitive: \(s \sim_i s' \) iff \(l_i = l_i' \)
The Prisoner's Dilemma as an ECGM

Let $AP = \{a_i, b_i, c_i, d_i\}$ for $i \in \{A, B\}$.

Example (ECGM \mathcal{P}_{pd})

For the set $Ag = \{A, B\}$ of agents, the prisoner’s dilemma ECGM \mathcal{P}_{pd} includes

- the set $I = \{s_0\}$ of initial states, with $s_0 = (\epsilon_A, \epsilon_B)$
- the transition function τ, given as
 - $\tau(s_0, (C, C)) = (b, b)$
 - $\tau(s_0, (C, D)) = (d, a)$
 - $\tau(s_0, (D, C)) = (a, d)$
 - $\tau(s_0, (D, D)) = (c, c)$
 - $\tau(s, (\ast, \ast)) = s$, for every state s different from s_0
- the interpretation π s.t. a state (l_A, l_B) belongs to $\pi(p_i)$ iff $l_i = p$.
Epistemic Strategy Logic

ESL

ESL extends SL with epistemic operators K_i for individual knowledge.

- we introduce a set Var_i of strategy variables for each agent $i \in Ag$

Definition (ESL)

ESL formulas are defined in BNF as follows:

$$\phi ::= p \mid \neg \phi \mid \phi \rightarrow \phi \mid X\phi \mid \phi U \phi \mid \exists x_i \phi \mid K_i \phi$$

- we consider a multi-agent setting ($\neq [CHP10]$)
- the language does not include the binding operator (α, x) ($\neq [MMV10]$)

The questions above can be recast as model checking problems:

$$\mathcal{P}_{pd} \models ? \exists x_A F a_A$$

$$\mathcal{P}_{pd} \models K_A(\exists x_A F a_A \lor \neg \exists x_A F a_A)$$

$$\mathcal{P}_{pd} \models K_B(\exists x_A F a_A \lor \neg \exists x_A F a_A)$$
Epistemic Concurrent Game Models

Strategies

Definition (Strategy)

An A-strategy is a mapping $f_A : G^+ \mapsto Act_A$ from finite sequences of states to enabled A-actions.

- a run λ is a sequence $s^0 \rightarrow s^1 \rightarrow \ldots$ of global states
- a run λ belongs to outcome $out(s, f_A)$ iff $\lambda(i + 1) \in \hat{\tau}(\lambda(i), f_A(\lambda[\ldots, i]))$
 \[\Rightarrow \text{ a group strategy is really the composition of its members' strategies} \]
- an assignment χ maps each agent $i \in Ag$ to an i-strategy f_i
 \[f^\chi \text{ is the } Ag\text{-strategy } \chi(i_0) \times \ldots \times \chi(i_\ell) \]

Definition (Satisfaction)

An ECGM \mathcal{P} satisfies an ESL formula φ in a state s for an assignment χ, iff

\[
\begin{align*}
(\mathcal{P}, s, \chi) \models p & \quad \text{iff} \quad s \in \pi(p) \\
(\mathcal{P}, s, \chi) \models X\psi & \quad \text{iff} \quad \text{for } \lambda = out(s, f^\chi), (\mathcal{P}, \lambda(1), \chi) \models \psi \\
(\mathcal{P}, s, \chi) \models \psi U\psi' & \quad \text{iff} \quad \text{for } \lambda = out(s, f^\chi) \text{ there is } k \geq 0 \text{ s.t. } (\mathcal{P}, \lambda(k), \chi) \models \psi' \\
& \quad \text{and } 0 \leq j < k \text{ implies } (\mathcal{P}, \lambda(j), \chi) \models \psi \\
(\mathcal{P}, s, \chi) \models \exists x_i \psi & \quad \text{iff} \quad \text{there exists an } i\text{-strategy } f_i \text{ s.t. } (\mathcal{P}, s, \chi_f^i) \models \psi \\
(\mathcal{P}, s, \chi) \models K_i \psi & \quad \text{iff} \quad \text{for every } s \in S, s \sim_i s' \text{ implies } (\mathcal{P}, s', \chi) \models \psi
\end{align*}
\]
Expressiveness
Knowledge of Nash Equilibria

• given an \(n \)-player game in normal form with payoff ordering \(a_1 > \ldots > a_k \), define

\[
\psi_{NE} \quad ::= \quad \bigwedge_{i=1}^n \bigwedge_{j=1}^k \left(\bigwedge_{i=1}^{i-1} \neg \exists y_j Xa_j \right) \land \exists y_i Xa_i \rightarrow Xa_i
\]

Proposition

\((P_{pd}, s_0, \chi) \models \psi_{NE} \iff (\chi(1)(s_0), \ldots, \chi(n)(s_0)) \text{ is a Nash equilibrium}\)

• for the prisoner’s dilemma,

\((P_{pd}, s_0, \chi) \models \psi_{NE} \iff (\chi(1)(s_0), \chi(2)(s_0)) \text{ is a Nash equilibrium} \iff \chi(1)(s_0) = \chi(2)(s_0) = D\)

The questions above can be recast as model checking problems:

\[
P_{pd} \models \text{?} \quad K_A \exists x_A, x_B \psi_{NE} \land K_B \exists x_A, x_B \psi_{NE}
\]

\[
P_{pd} \models \text{?} \quad \exists x_A, x_B (K_A \psi_{NE} \land K_B \psi_{NE})
\]
Expressiveness

Knowledge de re v. Knowledge de dicto

- knowledge de re \Rightarrow knowledge de dicto:

$$\models \exists x_i K_j \phi \rightarrow K_j \exists x_i \phi$$

also, knowledge de dicto \Rightarrow knowledge de re:

$$\models K_j \exists x_i \phi \rightarrow \exists x_i K_j \phi$$

indeed, agents have perfect information of the game

- individual strategies depend on global states [JvdH04]
Model Checking ESL

Theorem (Hardness)

The model checking problem for ESL is Non-ElementarySpace-hard.

- reduction to satisfiability for quantified propositional temporal logic (QPTL)
- differently from [MMV10] the syntax does not include the binding operator

Theorem (Completeness)

The model checking problem for ESL is PTime-complete w.r.t. the size of the model and Non-Elementary w.r.t. the size of the formula.

- reduction to non-emptyness for alternating tree automata [MMV10]

⇒ The model checking problem is no harder for ESL than for SL.
Imperfect Information

- Bob chooses secretly between 0 and 1
- at the next step Anne also chooses between 0 and 1
- Anne wins the game iff the values provided by the two players coincide
- the dotted line indicates epistemic indistinguishability

- Anne knows that there exists a strategy to win the game . . .
 . . . however, she is not able to point this strategy out

⇒ Anne has imperfect information of the game
Under imperfect information, strategies depend on the local state of agents only.

Definition (Uniform Strategies [JvdH04])

A (positional) i-strategy is *uniform* iff for all states s, s', $s \sim_i s'$ implies $f_i(s) = f_i(s')$.

- Anne knows that there exists a strategy to win the game . . .

 $$(Q, s_{\lambda 0}) \models_{ii} K_A \exists x_A \ X \text{ win}$$

 . . . however, there is no strategy that she knows to be winning:

 $$(Q, s_{\lambda 0}) \nmodels_{ii} \exists x_A K_A \ X \text{ win}$$
Epistemic modalities allow us to recover some fixed-point characterisations of ATL operators.

- for $A = \{i_0, \ldots, i_\ell\}$, $\vec{x}_A = x_{i_0}, \ldots, x_{i_\ell}$ and $\bar{A} = Ag \setminus A$, define

\[\langle\langle A \rangle\rangle \phi := \exists \vec{x}_A \forall \vec{x}_{\bar{A}} \phi \]

- under imperfect information we have that

\[\langle\langle A \rangle\rangle G \phi \not\iff \phi \land \langle\langle A \rangle\rangle X \langle\langle A \rangle\rangle G \phi \]
\[\langle\langle A \rangle\rangle F \phi \not\iff \phi \lor \langle\langle A \rangle\rangle X \langle\langle A \rangle\rangle F \phi \]
\[\langle\langle A \rangle\rangle \phi U \phi' \not\iff \phi' \lor (\phi \land \langle\langle A \rangle\rangle X \langle\langle A \rangle\rangle \phi U \phi' \land K_i(\langle\langle A \rangle\rangle \phi U \phi' \rightarrow \phi U \phi')) \]

- by using epistemic modalities we can recover fixed-point characterisations:

\[\langle\langle i \rangle\rangle G \phi \iff \phi \land \langle\langle i \rangle\rangle X \langle\langle i \rangle\rangle (G \phi \land K_i(\langle\langle i \rangle\rangle G \phi \rightarrow G \phi)) \]
\[\langle\langle i \rangle\rangle F \phi \iff \phi \lor \langle\langle i \rangle\rangle X \langle\langle i \rangle\rangle (F \phi \land K_i(\langle\langle i \rangle\rangle F \phi \rightarrow F \phi)) \]
\[\langle\langle i \rangle\rangle \phi U \phi' \iff \phi' \lor (\phi \land \langle\langle i \rangle\rangle X \langle\langle i \rangle\rangle (\phi U \phi' \land K_i(\langle\langle i \rangle\rangle \phi U \phi' \rightarrow \phi U \phi')))) \]
Conclusions

Results:
• ESL: a logic for reasoning about knowledge and strategies in a multi-agent setting
• the model checking problem is no harder than for SL
• under imperfect information ESL allows us to recover the fixed-point characterisation of ATL operators

and Future Work:
• fragments of ESL: better computational complexity?
• epistemic operators for group knowledge (distributed, common knowledge, etc.)
• imperfect information
References

Thomas Agotnes, Valentin Goranko, and Wojciech Jamroga.
Alternating-time temporal logics with irrevocable strategies.

Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman.
Alternating-time temporal logic.

Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman.
Strategy logic.

Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi.
Reasoning About Knowledge.

Peter Gammie and Ron van der Meyden.
Mck: Model checking the logic of knowledge.

Joseph Y. Halpern and Moshe Y. Vardi.
The complexity of reasoning about knowledge and time: Extended abstract.

Joseph Y. Halpern and Moshe Y. Vardi.
The complexity of reasoning about knowledge and time. i. lower bounds.

X. Huang and R. van der Meyden.
An epistemic strategy logic (extended abstract).

X. Huang and R. van der Meyden.
A temporal logic of strategic knowledge.

Wojciech Jamroga and Thomas Ágotnes.