Automata Techniques for Epistemic Protocol Synthesis

Guillaume Aucher, Bastien Maubert and Sophie Pinchinat

Strategic Reasoning 2014
April 6th, 2014
Two important approaches to add dynamics to Epistemic Logics:

Epistemic Temporal Logics
A model usually consists of:

- **Dynamics**: A finite transition system
- **Epistemics**: Observational equivalences on states.

Dynamic Epistemic Logics
Much finer way to describe the events and how they are perceived.

- **Epistemics**: Epistemic models and event models to represent
 - possible worlds, and how they are perceived,
 - possible events, and how they are perceived.
- **Dynamics**: Update product between epistemic and event models
What about strategizing/planning?

In the context of ETL:
- Has been, and still is, much studied
- Many decidability/complexity results
- Rely on the fact that the set of histories is regular
 - Powerset constructions
 - Tree automata techniques

In the context of DEL:
- Very little results
- Because the set of histories is not regular in general?

In this work:
- Identify a condition for DEL-generated structures to be regular
- Use automata techniques to tackle planning problems in DEL
1 Dynamic Epistemic Logic (DEL)

2 From DEL to regular structures

3 Epistemic planning and epistemic protocol synthesis
An example: Alice and Bob toss a coin in the dark.

The initial epistemic state:
- The coin is on heads
- Alice and Bob both ignore it
An example: Alice and Bob toss a coin in the dark.

The initial epistemic state:
- The coin is on heads
- Alice and Bob both ignore it

The event:
- The light turns on briefly
- Alice sees that it is heads
- Short-sighted Bob sees tails
An example: Alice and Bob toss a coin in the dark.

The initial epistemic state

The event
An example: Alice and Bob toss a coin in the dark.

The initial epistemic state

\[(w, e), (w', e') \]

The event

\[(w, e) \rightarrow (w', e') \]

The resulting epistemic state
Epistemic models

Epistemic language \mathcal{L}^{EL}

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid K_i \varphi \quad (p \in AP, i \in Ag)$$

Epistemic models

$$\mathcal{M} = (W, \{R_i\}_{i \in Ag}, V)$$

- W is a non-empty finite set of possible worlds,
- $R_i \subseteq W \times W$ is an accessibility relation for agent i,
- $V : AP \rightarrow 2^W$ is a valuation function.

Semantics of \mathcal{L}^{EL}

- $\mathcal{M}, w \models p$ if $w \in V(p)$
- $\mathcal{M}, w \models \neg \varphi$ if $\mathcal{M}, w \not\models \varphi$
- $\mathcal{M}, w \models \varphi \lor \psi$ if $\mathcal{M}, w \models \varphi$ or $\mathcal{M}, w \models \psi$
- $\mathcal{M}, w \models K_i \varphi$ if $\mathcal{M}, w' \models \varphi$ for all $w' \in R_i(w)$
Event models

\[\mathcal{E} = (E, \{R_i\}_{i \in Ag}, \text{pre}, \text{post}) \]

- \(E \) is a non-empty finite set of possible events,
- \(R_i \subseteq E \times E \) is an accessibility relation on \(E \) for agent \(i \),
- \(\text{pre} : E \rightarrow \mathcal{L}^{EL} \) is a precondition function and
- \(\text{post} : E \rightarrow AP \rightarrow \mathcal{L}^{EL} \) is a postcondition function.

Propositional event models

Pre and post-conditions are propositional.
Update product and DEL-generated structures

Product of $\mathcal{M} = (W, \{R_i\}_{i \in Ag}, V)$ and $\mathcal{E} = (E, \{R_i\}_{i \in Ag}, \text{pre}, \text{post})$

$$\mathcal{M} \otimes \mathcal{E} = (W^\otimes, \{R_i^\otimes\}_{i \in Ag}, V^\otimes)$$

$$W^\otimes = \{(w, e) \in W \times E \mid \mathcal{M}, w \models \text{pre}(e)\},$$

$$R_i^\otimes(w, e) = \{(w', e') \in W^\otimes \mid w' \in R_i(w) \text{ and } e' \in R_i(e)\},$$

$$V^\otimes(p) = \{(w, e) \in W^\otimes \mid \mathcal{M}, w \models \text{post}(e)(p)\}$$

Structure generated from \mathcal{M} and \mathcal{E}

$$\mathcal{M}\mathcal{E}^n = \mathcal{M} \otimes \mathcal{E} \otimes \ldots \otimes \mathcal{E} \quad \text{for } n \text{ times}$$

$$\mathcal{M}\mathcal{E}^* = \bigcup_{n \geq 0} \mathcal{M}\mathcal{E}^n = (H, \{\sim_i\}_{i \in Ag}, V)$$

An element (w, e_1, \ldots, e_n) of $\mathcal{M}\mathcal{E}^*$ is seen as a history $we_1 \ldots e_n$, and $we_1 \ldots e_n \sim_i w'e_1' \ldots e_n'$ if $w R_i w'$ and $e_k R_i e_k'$ for all k.
Dynamic Epistemic Logic (DEL)

From DEL to regular structures

Epistemic planning and epistemic protocol synthesis

Plan

1. Dynamic Epistemic Logic (DEL)

2. From DEL to regular structures

3. Epistemic planning and epistemic protocol synthesis
Definition

Regular structures

A relational structure \(S = (D, \{\sim_i\}_{i \in Ag}, V) \) is regular if:

- \(D \subseteq \Sigma^* \) is a **regular language** over some alphabet \(\Sigma \),
- for each \(i \in Ag \), \(\sim_i \) is a **regular relation**, and
- for each \(p \in AP \), \(V(p) \subseteq D \subseteq \Sigma^* \) is a **regular language**.

In other words, the structure is representable by finite automata.
Regular relations

A binary relation over words is **regular** if it is recognized by a synchronous transducer.

Example: synchronous perfect recall

- Let $\sim \subseteq \Sigma \times \Sigma$ be an accessibility relation.
- Extend it to words:

 $$a_1 \ldots a_n \sim a'_1 \ldots a'_n \text{ if } a_k \sim a'_k \text{ for each } k.$$

- Recognized by:

 $$q_0$$

 if $a \sim a'$
From DEL to automata

Theorem: from DEL to automata

For every epistemic model \mathcal{M} and propositional event model \mathcal{E}, $\mathcal{M}\mathcal{E}^*$ is an **automatic structure**, and we can build recognizers.

Define $\mathcal{A} = (\Sigma, Q, \delta, q_\emptyset, F)$, where

- $\Sigma = W \cup E$,
- $F = \{q_\nu \mid \nu \subseteq AP\}$, $Q = F \cup \{q_\emptyset\}$, and $\forall w \in W$, $\forall e \in E$,

\[
\delta(q_\emptyset, w) = q_\nu(w) \quad \delta(q_\emptyset, e) \text{ is undefined,} \quad \delta(q_\nu, w) \text{ is undefined}
\]

\[
\delta(q_\nu, e) = \begin{cases} q_{\nu'}, \text{ with } \nu' = \{p \mid \nu \models \text{post}(e)(p)\} & \text{if } \nu \models \text{pre}(e) \\ \text{undefined} & \text{otherwise.} \end{cases}
\]

Fact

\mathcal{A} accepts exactly the histories in $\mathcal{M}\mathcal{E}^*$.
Plan

1. Dynamic Epistemic Logic (DEL)

2. From DEL to regular structures

3. Epistemic planning and epistemic protocol synthesis
Epistemic planning

The epistemic planning problem (EPP)

Input:
- a pointed initial epistemic model \((M, w)\)
- an event model \(E\)
- a goal formula \(\varphi \in \mathcal{L}^{EL}\)

Output:
- Is there \(e_1 \ldots e_n\) s.t. \((M, w) \otimes (E, e_1) \otimes \ldots \otimes (E, e_n) \models \varphi\) ?

Example

Is there a finite sequence of events such that in the end, Alice and Bob both know how is the coin?
Epistemic planning

The epistemic planning problem (EPP)

Input:
- a pointed initial epistemic model \((\mathcal{M}, w)\)
- an event model \(\mathcal{E}\)
- a goal formula \(\varphi \in \mathcal{L}^{EL}\)

Output:
- Is there \(e_1 \ldots e_n\) s.t. \(\mathcal{M}\mathcal{E}^*, we_1 \ldots e_n \models \varphi\)?

Example

Is there a finite sequence of events such that in the end, Alice and Bob both know how is the coin?
Epistemic planning

The propositional epistemic planning problem (propositional EPP)

Input:
- a pointed initial epistemic model \((\mathcal{M}, w)\)
- a propositional event model \(\mathcal{E}\)
- a goal formula \(\varphi \in \mathcal{L}^{EL}\)

Output:
- Is there \(e_1 \ldots e_n\) s.t. \(\mathcal{M}\mathcal{E}^*, we_1 \ldots e_n \models \varphi\) ?

Example

Is there a finite sequence of events such that in the end, Alice and Bob both know how is the coin?

Theorem [Yu et al. 2013]

The propositional epistemic planning problem is decidable.
Our contribution

Theorem [Yu et al. 2013]

The propositional epistemic planning problem is decidable.

[Yu et al. 2013] prove that a finite search tree is sufficient.

We propose:

Alternative proof, based on automata techniques.
- Provides better upper bounds on the complexity.
- Builds an automaton that generates all the solution plans.
- Our approach allows to solve a much more general problem.
Uniform strategies

Use techniques developed for computing uniform strategies with rational relations.

Uniform strategy problem (roughly):

Input:
- A finite game arena
- \(n \) transducers that recognize relations between plays
- A CTL*\(K_n \) formula \(\varphi \)

Output:
- Is there a strategy for Player 1 that verifies \(\varphi \)?

[M., Pinchinat 2013]

The uniform strategy problem is decidable (nonelementary).
Back to epistemic planning

Take an instance \(((\mathcal{M}, w), \mathcal{E}, \varphi)\) of the propositional EPP.

- Build an automatic representation \((\mathcal{A}, \{T_i\}_{i \in \text{Ag}})\) of \(\mathcal{M}\mathcal{E}^*\)
- See \(\mathcal{A}\) as a one player game arena
- Look for a strategy (a play) that verifies \(\text{EF}\varphi\) (or \(\text{AF}\varphi\))

Because the uniform strategy problem is decidable for regular relations, we get the decidability of Propositional EPP, and more:

Theorem

Arbitrary relations: Prop. EPP is in \((d(\varphi) + 1)\)-\text{EXPTIME}

Equivalence relations: Prop. EPP is in \((ad(\varphi) + 1)\)-\text{EXPTIME}

Synthesis: Build automaton that generates all the solution plans.
Epistemic protocol synthesis in DEL

Epistemic planning

- finite sequence of events
- reach epistemic objective

Theorem

The propositional epistemic protocol synthesis problem is decidable.

Same techniques and same complexity as for epistemic planning.
Epistemic protocol synthesis in DEL

Epistemic planning
- finite sequence of events
- reach epistemic objective

Epistemic protocol synthesis
- infinite tree of events
- $\text{CTL}^* K_n$ specification

Theorem

The propositional epistemic protocol synthesis problem is decidable.

Same techniques and same complexity as for epistemic planning.
Epistemic protocol synthesis in DEL

Epistemic planning
- finite sequence of events
- reach epistemic objective

Epistemic protocol synthesis
- infinite tree of events
- CTL^*K_n specification

Theorem
The propositional epistemic protocol synthesis problem is decidable.

Same techniques and same complexity as for epistemic planning.
Conclusion

- Connection between DEL-generated structures and regular structures
- This bridge allows us to apply existing automata techniques
- Alternative decidability proof for Propositional EPP
- Side results:
 - Improved complexity upper-bounds
 - Synthesize an automaton that recognizes the solution plans
- Same techniques apply to solve the generalized problem of Epistemic protocol synthesis
Future work

- Are these decision procedures optimal?
- Consider asynchronous variants of DEL
- Put strategic aspects in DEL.
 - By whom is an event triggered?
 - What are the agents’ objectives?

Thank you!
Semantics of \bullet and \blacklozenge

Blue arrows: \sim

\blacklozenge: Strict quantifier

\blacklozenge: Full quantifier
Semantics of \sim and $\sim\sim$

Blue arrows: \sim

\sim : Strict quantifier

$\sim\sim$: Full quantifier
Semantics of \sqsubseteq and \sqsubseteq

Blue arrows: \bowtie

\sqsubseteq: Strict quantifier

\sqsubseteq: Full quantifier
Semantics of \sqsubseteq and \sqsubseteq

Blue arrows: \sim

\sqsubseteq: Strict quantifier

\sqsubseteq: Full quantifier
Semantics of \(\sqsupseteq \) and \(\sqsubseteq \)

Blue arrows: \(\sim \)

\(\sqsupseteq \) : Strict quantifier

\(\sqsubseteq \) : Full quantifier