Concurrent Game Structures with Roles

Truls Pedersen

University of Bergen, Norway
(joint work with Sjur Dyrkolbotn, Piotr Kaźmierczak and Erik Parmann)

1st International Workshop on Strategic Reasoning
March 17th 2013, Rome
Exploring notion of homogeneity in strategic situations.

Exploit the fact that in many real-world situations multiple agents play the same role.

Jamroga & Dix:
“Do agents make model checking explode (computationally)?”
\langle \{a, b\} \rangle \diamond p
\[\langle \alpha_1, \ldots, \alpha_n \rangle\]
\[\langle \alpha_1, \ldots, \alpha_n \rangle \rightarrow \langle (n_1, \ldots, n_k), \ldots, (m_1, \ldots, m_l) \rangle \]
Definition (cgs)

- $\mathbb{A} : Q \times \mathcal{A} \rightarrow \mathbb{N}^+$ is the number of available actions in a given state for a given agent.
- $\delta : Q \times \bigcup_{q \in Q} \mathcal{A}(q) \rightarrow Q$, defines a successor state for any state and a complete profile for q.
Definition (RCGS)

- R is a non-empty set of roles.
- $\mathcal{R} : Q \times A \rightarrow R$ denotes the role the given agent belongs to in the given role.
- $\mathcal{A} : Q \times R \rightarrow \mathbb{N}^+$ is the number of available actions in a given state for a given role.
- $\delta : Q \times \bigcup_{q \in Q} P(q) \rightarrow Q$, defines a successor state for any state and a complete (voting) profile for q.
Definition (Complete profile)

- A complete vote for a role r in q

$$(n_1, \ldots, n_k)$$
Definition (Complete profile)

- A complete vote for a role r in q
 \[(n_1, \ldots, n_k)\]

- A complete voting profile for q
 \[\langle (n_1, \ldots, n_k), \ldots, (m_1, \ldots, m_l) \rangle\]
For cgs there are 2^n possible complete profiles.

For rcgs there are n possible complete profiles.

Figure: Simple 1-tier sensor network
Figure: Simple 1-tier sensor network

- For CGS there are 2^n possible complete profiles.
- For RCGS there are n possible complete profiles.
Figure: Simple 2-tier sensor network.
Size of models

Number of ways r agents can choose a number $\{1, \ldots, \alpha\}$, is

\[
\binom{r + \alpha - 1}{\alpha} = \frac{(r + \alpha - 1)!}{r!(\alpha - 1)!}
\]
Size of models

The number of out-edges at q is

$$\prod_{r \in R} \frac{(|R(q, r)| + (A(q, r) - 1))!}{|R(q, r)|!(A(q, r) - 1))!}$$

(1)
Size of models

The number of out-edges at q is

$$\prod_{r \in R} \frac{(|\mathcal{R}(q, r)| + (A(q, r) - 1))!}{|\mathcal{R}(q, r)|!(A(q, r) - 1))!}$$ (1)

Observe that

$$\frac{(r+(a-1))!}{r!(a-1)!} \leq a^r \quad \text{and} \quad \frac{(r+(a-1))!}{r!(a-1)!} \leq r^a$$ (2)
Size of models

The number of out-edges at q is

$$\prod_{r \in R} \frac{(|\mathcal{R}(q, r)| + (\mathcal{A}(q, r) - 1))!}{|\mathcal{R}(q, r)|!(\mathcal{A}(q, r) - 1))!}$$ \hspace{1cm} (1)

Observe that

$$\frac{(r+(a-1))!}{r!(a-1)!} \leq a^r \quad \text{and} \quad \frac{(r+(a-1))!}{r!(a-1)!} \leq r^a$$ \hspace{1cm} (2)

This gives that the size of the model is bounded by both

$$\mathcal{O}\left(\sum_{q \in Q} \prod_{r \in R} |\mathcal{R}(q, r)|^{\mathcal{A}(q, r)} \right)$$ \hspace{1cm} (3)

and

$$\mathcal{O}\left(\sum_{q \in Q} \prod_{r \in R} \mathcal{A}(q, r)^{|\mathcal{R}(q, r)|} \right)$$ \hspace{1cm} (4)
Theorem

For a RCGS S and a formula ϕ, $m\text{check}(S, \phi)$ takes time $\mathcal{O}(|\phi| \times e^2)$, where e is the total number of transitions in S.
Theorem

For a RCGS S and a formula ϕ, $mcheck(S, \phi)$ takes time $\mathcal{O}(|\phi| \times e^2)$, where e is the total number of transitions in S.

Theorem

*Given any CGS-model M, we have, for all $S \in f^-(M)$, that the complexity of running $mcheck(S, \phi)$ is $\mathcal{O}(mcheck(M, \phi))$.***
We introduce roles to explore different levels of homogeneity between agents.

In cases where agents have some level of homogeneity we find that the RCGS model is smaller than the CGS model.

Equivalent wrt. ATL.