Reasoning about Strategies under Partial Observability and Fairness Constraints

Simon Busard
Charles Pecheur
Hongyang Qu
Franco Raimondi

Université catholique de Louvain, Belgium
Université catholique de Louvain, Belgium
University of Oxford, United Kingdom
Middlesex University, United Kingdom

1st International Workshop on Strategic Reasoning (SR 2013)
Rome, March 16–17, 2013
Running Example: A simple card game [1]

Three cards: A, K, Q
(A wins over K, K over Q, Q over A);

A player, a dealer.

Running Example: A simple card game [1]

Three cards: A, K, Q
(A wins over K, K over Q, Q over A);

A player, a dealer.

The dealer gives a card and keeps one;

the player can change his card with the one on table.

Running Example: A simple card game
Running Example: A simple card game [1]

Three cards: A, K, Q
(A wins over K, K over Q, Q over A);

A player, a dealer.

The dealer gives a card and keeps one;
the player can change his card
with the one on table.

Variant: the player can play infinitely.

Running Example: A simple card game

A, K → A, Q
K, A → K, Q
Q, A → Q, K
A, K → A, Q
K, A → K, Q
Q, A → Q, K
A, K → A, Q
K, A → K, Q
Q, A → Q, K
Reasoning about strategies

Model checking problem:

does the player have a strategy to win?
Reasoning about strategies

Model checking problem:
does the player have a strategy to win?

⇒ it depends on the semantics!
Reasoning about strategies

Model checking problem:

does the player have a strategy to win?

Under *ATL*, we consider all strategies. The player has a strategy to win, even if he cannot play it:
e.g., in \(\langle A, K \rangle \), keep the card; in \(\langle A, Q \rangle \), exchange it.
Reasoning about strategies

Model checking problem:
does the player have a strategy to win?

\textit{ATL}: yes.

Under \textit{ATL}_{ir}, we consider only memoryless uniform strategies. There is no uniform strategy to win, because the player cannot distinguish, e.g., \(\langle A, K \rangle \) and \(\langle A, Q \rangle \), (winning actions are different in each case).
Reasoning about strategies

Model checking problem:
\textbf{does the player have a strategy to win?}

\textit{ATL}: yes.

\textit{ATL}_{ir}: no.

If we consider \textit{ATL}_{ir} with a \textbf{fair dealer} and an \textbf{infinite play}, the player can eventually win: just use one uniform strategy, the right pair will finally come.
Reasoning about strategies

Model checking problem:

\textbf{does the player have a strategy to win?}

\textit{ATL}: yes.

\textit{ATL}_{ir}: no.

\textit{ATL}_{ir} + fair dealer and infinite play: yes.

\Rightarrow \textit{ATL}^{F}_{po}: branching time, knowledge, memoryless uniform strategies and unconditional fairness constraints.
Outline

Strategies, Temporal Logics and Fairness

Strategies under Partial Observability and Fairness Constraints

Conclusion and Perspectives
ATL, reasoning about **strategies** of the agents. [2]

Syntax: Strategic modalities: \(⟨\Gamma⟩ \mathbf{X} \phi, [\Gamma] \mathbf{G} \phi, ⟨\Gamma⟩[\phi_1 \mathbf{U} \phi_2] \), etc.

Semantics: A state \(s\) satisfies \(⟨\Gamma⟩ \pi\) iff there exists a set of **strategies** for agents in \(\Gamma\) such that all enforced paths satisfy \(\pi\).

ATL, reasoning about **strategies** of the agents. [2]

Syntax: Strategic modalities: $⟨\Gamma⟩X \phi$, $[\Gamma]G \phi$, $⟨\Gamma⟩[\phi_1 U \phi_2]$, etc.

Semantics: A state s satisfies $⟨\Gamma⟩\pi$ iff there exists a set of **strategies** for agents in Γ such that all enforced paths satisfy π.

Model checking:

$$\llbracket [\Gamma]G \phi \rrbracket = \nu Z.\llbracket \phi \rrbracket \cap Pre[\Gamma](Z)$$

where $Pre[\Gamma](Z)$ is the set of states from which Γ cannot avoid to reach Z in one step.

ATL$_{ir}$, memoryless uniform strategies [3]

Only **memoryless uniform** strategies:

\[f_a : S \rightarrow \text{Act} \text{ such that } s \sim_a s' \implies f_a(s) = f_a(s') \]

Semantics: A state \(s \) satisfies \(\langle \Gamma \rangle \pi \) iff there exists a set of **memoryless uniform** strategies for agents in \(\Gamma \) such that all paths enforced **from all** \(s' \sim_\Gamma s \) satisfy \(\pi \).

FairCTL: time and fairness constraints [4]

Add a set of **fairness constraints** $FC \subseteq 2^S$ to the model;
⇒ unconditional state-based fairness.

Only **fair paths** are considered:
$s \models E \pi$ iff there exists a **fair** path from s satisfying π;
$s \models A \pi$ iff all **fair** paths from s satisfy π.

FairCTL: time and fairness constraints [4]

Add a set of **fairness constraints** $FC \subseteq 2^S$ to the model;
⇒ unconditional state-based fairness.

Only **fair paths** are considered:
$s \models E \pi$ iff there exists a **fair** path from s satisfying π;
$s \models A \pi$ iff all **fair** paths from s satisfy π.

Model checking:

$$[\text{EG } \phi] = \nu Z.[\phi] \cap \bigcap_{fc \in FC} \text{Pre}(\mu Y. (Z \cap fc) \cup ([\phi] \cap \text{Pre}(Y)))$$

where $\text{Pre}(Z)$ is the set of states having a successor in Z.

Adding fairness constraints to the card game
Outline

Strategies, Temporal Logics and Fairness

Strategies under Partial Observability and Fairness Constraints

Conclusion and Perspectives
\[\text{ATLK}_{p_0}^F = \text{FairCTL}, \text{ knowledge and } \text{ATL}_{ir} \text{ with fairness} \]

Syntax: CTL \((\text{EX, AG, etc.}), \text{ knowledge (K}_{ag}, \text{ C}_g, \text{ etc.) and strategies (⟨Γ⟩F, [Γ]U, etc.)} \)

Semantics: A state \(s\) satisfies \(⟨Γ⟩\ π\) iff there exists a set of memoryless uniform strategies for agents in \(Γ\) such that all fair paths enforced from all \(s’ ∼_Γ s\) satisfy \(π\).
To model check $ATLK_{po}^F$, we defined $ATLK_{fo}^F$ and its model checking

\[ATLK_{fo}^F = FairCTL + \text{knowledge} + ATL \text{ with fairness} \]

$ATLK_{fo}^F$ semantics: A state s satisfies $\langle \Gamma \rangle \pi$ iff there exists a set of memoryless strategies (not necessarily uniform) for agents in Γ such that all fair paths enforced (from s only) satisfy π.
To model check $ATLK^F_{po}$, we defined $ATLK^F_{fo}$ and its model checking

$ATLK^F_{fo} = FairCTL + knowledge + ATL$ with fairness

$ATLK^F_{fo}$ semantics: A state s satisfies $\langle \Gamma \rangle \pi$ iff there exists a set of memoryless strategies (not necessarily uniform) for agents in Γ such that all fair paths enforced (from s only) satisfy π.

$ATLK^F_{fo}$ model checking:

$$[[\Gamma]G\phi]^F_{fo} = \nu Z. [[\phi]^F_{fo}] \bigcap_{fc \in FC} Pre[\Gamma](\mu Y.(Z \cap fc) \cup ([\phi]^F_{fo} \cap Pre[\Gamma](Y)))$$
$\text{ATL}_K^{F_{\text{po}}}$ model checking

A state s satisfies $\langle \Gamma \rangle \pi$ iff there exists a set of memoryless uniform strategies for agents in Γ which allows Γ to enforce π in all states indistinguishable from s, considering only fair paths.
$ATLK_{po}^F$ model checking

A state s satisfies $\langle \Gamma \rangle \pi$ iff there exists a set of memoryless uniform strategies for agents in Γ which allows Γ to enforce π in all states indistinguishable from s, considering only fair paths.

To get all the states satisfying $\langle \Gamma \rangle \pi$:

1. List all the memoryless uniform strategies;
2. Use $ATLK_{fo}^F$ model checking to get states satisfying the property in this strategy;
3. Then restrict to set of undistinguishable states.
ATLK$_{po}^F$ model checking: *Split* algorithm

Split the state/action pairs into memoryless uniform strategies.

1. Get all conflicting equivalence classes;
2. If there are none, the set is itself a memoryless uniform strategy.
3. Otherwise, choose a conflicting equivalence class;
4. Split it;
5. and recursively call *Split* on the rest.
ATLK^F_{po} model checking example: $\langle \text{player} \rangle F \text{ win}$
$ATLK^F_{po}$ model checking example: $⟨\text{player}⟩F \text{ win}$
ATLK_p^F model checking example: $\langle \text{player} \rangle F \text{ win}$
ATLK^F_{po} model checking example: $\langle player \rangle F \text{ win}$
ATLK^F_{po} model checking example: $\langle \text{player} \rangle F \text{ win}$
ATLK_{po}^F model checking example: $\langle \text{player} \rangle F \text{ win}$
\(ATLK_{po}^F \) model checking example: \(\langle \text{player} \rangle F \text{ win} \)
Improving the algorithm:
alternating between filtering states and splitting strategies

We can alternate between filtering states that belong to a strategy, and splitting non-uniform strategies into uniform ones.

The filtering is correct since $s \not\models_{fo} F \langle \Gamma \rangle \pi \implies s \not\models_{po} F \langle \Gamma \rangle \pi$.

1. Filter current sub-graph for getting states with a strategy;
2. Split on one conflicting equivalence class (if any; otherwise, stop);
3. call the algorithm again with each split sub-graph.
Outline

Strategies, Temporal Logics and Fairness

Strategies under Partial Observability and Fairness Constraints

Conclusion and Perspectives
Conclusion

$ATLK^F_{po}$: branching time, knowledge and strategies under partial observability and (unconditional state-based) fairness constraints.

(Symbolic) model checking algorithm based on $ATLK^F_{fo}$ model checking and splitting the graph into memoryless uniform strategies.
Future work

Develop counter-examples for $ATLK^F_{po}$
(for model understanding, controller synthesis)

Implement a model checker for $ATLK^F_{po}$
with counter-examples generation
(with PyNuSMV, a new Python framework based on NuSMV [5])

Thank you.
Questions?